
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 878
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Performance Analysis of Parallel Way Source
Definition Algorithm in Correlated Subqueries

Execution

S.T.Padmapriya Dr. J. Sutha
Post Graduate Student Professor and Head
Department of Computer Science and Engineering, Department of Computer Science and Engineering,
Sethu Institute of Technology Sethu Institute of Technology
Virudhunagar – 626115, Tamilnadu, India Virudhunagar – 626115, Tamilnadu, India

stpadmapriya@gmail.com hodcse@sethu.ac.in

Abstract -Continuous queries are used to monitor changes to
time varying data and to provide results useful for online
decision making. Typically a user desires to obtain the value of
some aggregation function over distributed data items, for
example, to know value of portfolio for a client; or the AVG of
temperatures sensed by a set of sensors. Resource utilized group
aggregation for correlated type validation at client level is the
proposed access. Correlated sub query is the query to return the
resultant records in partial manner. It means, the query
evaluates grouped records and fetches the result until the last
group is met. In large data bases there are highly maximized
records to meet the groups. This type of query evaluates once and
returned to result to parent and continues to fetch the retrieval
process. In this paper, Client Framework prepares task and it
will be divided into many divisions to start separate way to start
the multi connection process using parallel approach. Intelligent
Group Service checks the availability of groups and decides
percentage level based on the idle resources in network.
Percentage tasks decide how many groups can be sent to one
available server. The parallel approach starts the retrieval
process from the system based on the percentage. After the
downloading process, the assembler starts the assembling
process. Data producer Service prepares the result and return to
Client frame work. After making fast retrieval Assembler
assembles it in locally. Population Data are replicated in Mirror
Network. Client system finds the availability of available servers
and makes the communication in dynamic level. Group based
segregated process against servers is started from client process
by IGS.

Index Terms— Correlated subqueries, distributed query
processing, data dissemination, coherency, Parallel way source.

I.INTRODUCTION

 A correlated sub query is nothing more than a sub query that is
connected to the "main" query - it uses one or more columns from the
main table in the SQL of the sub query. Many times, it is logically
equivalent to a join; based on the current statistics, the optimizer may
decide to "convert" the sub query into a join. For example, if the
optimizer thinks both the query and the sub query will approximately
the same number of rows, it will probably use a join. If it thinks

that the sub query will return a small number (relative to the
main query), it may leave it as a sub query.
 The correlated sub query is a very powerful tool. It is an excellent
technique to use when there is a need to determine which rows to be
selected based on one or more values from another table. This is
especially true when the value for comparison is based on an
aggregate. It combines sub query processing and join processing into
a single request. The operation for a correlated sub query differs from
that of a normal sub query. Instead of comparing the selected sub
query values against all the rows in the main query, the correlated sub
query works backward. It first reads a row in the main query, and
then goes into the sub query to find all the rows that match the
specified column value. Then, it gets the next row in the main query
and retrieves all the sub query rows that match the next value in this
row. This processing continues until all the qualifying rows from the
main select are satisfied.
 The Multithreading paradigm has become more popular as efforts
to further exploit instruction level parallelism have stalled since the
late-1990s. This allowed the concept of Throughput Computing to re-
emerge to prominence from the more specialized field of transaction
processing: Even though it is very difficult to further speed up a
single thread or single program, most computer systems are actually
multi-tasking among multiple threads or programs.
 Techniques that would allow speed up of the overall system
throughput of all tasks would be a meaningful performance gain. The
two major techniques for throughput
computing are multiprocessing and multithreading. If a thread gets a
lot of cache misses, the other thread(s) can continue, taking
advantage of the unused computing resources, which thus can lead to
faster overall execution, as these resources would have been idle if
only a single thread was executed. If a thread cannot use all the
computing resources of the CPU (because instructions depend on
each other's result), running another thread permits to not leave these
idle. If several threads work on the same set of data, they can actually
share their cache, leading to better cache usage or synchronization on
its values.

II.EXISTING METHODS
 E.Edara et.al (2008) proposed a novel technique called
asynchronous in-network prediction incorporating two

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 879
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

computationally efficient methods for in-network prediction of partial
aggregate values. These values are propagated via a tree whose
construction is cognizant of (a) the coherency requirements
associated with the queries, (b) the remaining energy at the sensors,
and (c) the communication and message processing delays. Finally,
they exploited in-network filtering and in-network aggregation to
reduce the energy consumption of the nodes in the network.
Experimental results over real world data support their claim for
aggregate queries with associated coherency requirements, a
prediction based asynchronous scheme provides higher quality results
for a longer amount of time than a synchronous scheme. Also,
whereas aggregate dissemination techniques proposed so far for
sensor networks appear to have to trade-of quality of data for energy
efficiency.
 Y.Zhou et.al (2008) focussed on the problem of constructing
dissemination trees to minimize the average loss of fidelity of the
system. They observed that existing heuristic-based approaches can
only explore a limited solution space and hence may lead to sub-
optimal solutions. On the contrary, they proposed an adaptive and
cost-based approach. Their cost model takes into account both the
processing cost and the communication cost. Furthermore, as a
distributed stream processing system is vulnerable to inaccurate
statistics, runtime fluctuations of data characteristics, server
workloads, and network conditions, they have designed our scheme
to be adaptive to these situations: an operational dissemination tree
may be incrementally transformed to a more cost-effective one. Their
adaptive strategy employs distributed decisions made by the
distributed servers independently based on localized statistics
collected by each server at runtime. For a relatively static
environment, they also proposed two static tree construction
algorithms relying on a priori system statistics. These static trees can
also be used as initial trees in a dynamic environment.
 G.Carmode et.al (2005) proposed a novel algorithmic solutions for
the problem of continuously tracking a broad class of complex
aggregate queries in such a distributed-streams setting. Their tracking
schemes maintain approximate query answers with provable error
guarantees, while simultaneously optimizing the storage space and
processing time at each remote site, and the communication cost
across the network. They relied on tracking general-purpose
randomized sketch summaries of local streams at remote sites along
with concise prediction models of local site behavior in order to
produce highly communication- and space/time-efficient solutions.
The result is a powerful approximate query tracking framework that
readily incorporates several complex analysis queries (including
distributed join and multi-join aggregates, and approximate wavelet
representations), thus giving the first known low-overhead tracking
solution for such queries in the distributed-streams model.
 C.Ravishankar et.al (2005) proved that the client assignment
problem is NP-Hard. Given the closeness of the client-repository
assignment problem and the matching problem in combinatorial
optimization, they have tailored and studied two available solutions
to the matching problem from the literature: (i) max-flow min-cost
and (ii) stable-marriages. Their empirical results using real-world
dynamic data show that the presence of coherence requirements adds
a new dimension to the client-repository assignment problem. An

interesting result is that in update intensive situations a better fidelity
can be delivered to the clients by attempting to deliver data to some
of the clients at a coherence lower than what they desire. A
consequence of this observation is the necessity for quick adaptation
of the delivered (vs. desired) data coherence with respect to the
changes in the dynamics of the system. They developed techniques
for such adaptation and show their impressive performance.
 S.Agrawal et.al (2004) proposed various techniques for the
efficient organization of a temporal coherency preserving dynamic
data dissemination network. The network consists of sources of
dynamically changing data, repositories to replicate this data, and
clients. Given the temporal coherency properties of the data available
at various repositories, they suggested methods to intelligently
choose a repository to serve a new client request. The goal was to
support as many clients as possible, from the given network.
Secondly, they proposed strategies to decide what data should reside
on the repositories, given the data coherency needs of the clients.
They modeled the problem of selection of repositories for serving
each of the clients as a linear optimization problem, and derive its
objective function and constraints. In view of the complexity and
infeasibility of using this solution in practical scenarios, they also
suggest a heuristic solution. Experimental evaluation, using real
world data, demonstrates that the fidelity achieved by clients using
the heuristic algorithm is close to that achieved using linear
optimization. To improve the fidelity further through better load
sharing between repositories, they proposed an adaptive algorithm to
adjust the resource provisions of repositories according to their recent
response times. It is often advantageous to reorganize the data at the
repositories according to the needs of clients. To this end, they
proposed two strategies based on reducing the communication and
computational overheads. They evaluated and compared the two
strategies, analytically, using the expected response time for an
update at repositories, and by simulation, using the loss of fidelity at
clients, as our performance measure. The results suggest that a
considerable improvement in fidelity can be achieved by judicious
reorganization.
 C.Olston et.al (2003) proposed a new technique for reducing the
overhead. Users register continuous queries with precision
requirements at the central stream processor, which installs filters at
remote data sources. The filters adapt to changing conditions to
minimize stream rates while guaranteeing that all continuous queries
still receive the updates necessary to provide answers of adequate
precision at all times. Their approach enables applications to trade
precision for communication overhead at a fine granularity by
individually adjusting the precision constraints of continuous queries
over streams in a multi-query workload. Through experiments
performed on synthetic data simulations and a real network
monitoring implementation, they demonstrated the effectiveness of
our approach in achieving low communication overhead compared
with alternate approaches.
 S.Shah et.al (2002), proposed techniques for disseminating
dynamic data—such as stock prices and real-time weather
information—from sources to a set of repositories. They focussed on
the problem of maintaining coherency of dynamic data items in a
network of cooperating repositories. They showed that cooperation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 880
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

among repositories— where each repository pushes updates of data
items to other repositories—helps reduce system-wide
communication and computation overheads for coherency
maintenance. However, contrary to intuition, they also showed that
increasing the degree of cooperation beyond a certain point can, in
fact, be detrimental to the goal of maintaining coherency at low
communication and computational overheads. They presented
techniques (i) to derive the “optimal” degree of cooperation among
repositories, (ii) to construct an efficient dissemination tree for
propagating changes from sources to cooperating repositories, and
(iii) to determine when to push an update from one repository to
another for coherency maintenance. They evaluated the efficacy of
their techniques using real-world traces of dynamically changing data
items (specifically, stock prices) and showed that careful
dissemination of updates through a network of cooperating
repositories can substantially lower the cost of coherency
maintenance.
 M.J.Franklin et.al (2002) presented the Tiny Aggregation (TAG)
service for aggregation in low-power, distributed, wireless
environments. TAG allows users to express simple, declarative
queries and have them distributed and executed efficiently in
networks of low-power, wireless sensors. They discussed various
generic properties of aggregates, and show how those properties
affect the performance of our in network approach. They included a
performance study demonstrating the advantages of their approach
over traditional centralized, out-of-network methods, and discussed a
variety of optimizations for improving the performance and fault
tolerance of the basic solution.

III.OVERVIEW
3.1 Description
 This paper describes the correlated sub query streams by means of
dividing the clients query into more than one sub query. The system
deals with one main server and two content servers. The main server
gets request from the client and divide into many sub queries. The
divided sub queries are formed by different groups. Intelligent Group
Service(IGS) checks the availability and decides percentage level
based on the idle resources in network. Percentage tasks decide how
many groups can be sent to one available server. Parallel source
definition algorithm is used for allocation of groups to the content
servers. Multi threading is used to process more queries at a time,
hence provide more efficient processing and time consuming.

3.2 Existing System
 Correlated sub query is the query to return the resultant records in
partial manner. It means, the query evaluates grouped records and
fetches the result until the last group is met. In large data bases there
are highly maximized records to meet the groups. This type of query
evaluates once and returns the result to parent and continues the
retrieval process. For the simple records, the system works
effectively where as large data sets suffer more process resources
than the proposed system.

3.3 Proposed System

 Client Framework prepares task and it will be divided into many
divisions to start separate way to start the multi connection process
using parallel approach. Intelligent Group Service checks the
availability of groups and decides percentage level based on the idle
resources in network. Percentage tasks decide how many groups can
be sent to one available server. The parallel approach starts the
retrieval process from the system based on the percentage. After the
downloading process, the assembler starts the assembling process.
 Data producer Service prepares the result and return to Client
frame work. After making fast retrieval Assembler assembles it in
locally. Here admin server and content server are managed in
network environment. Admin server is the server to enter the data in
various departments. For the secured process Central Server has only
storage system for population data. The proposed system design is
shown in Figure 1.

Fig 1. Proposed system design

IV. IMPLEMENTATION AND METHODOLOGY

4.1 Parallel way Source definition Algorithm
Step 1 : Group Counting based entity
Step 2 : Server availability verification
Step 3 : Resource calculation Total resource calculation and it is

equal to 100 Single percentage calculation Define
individual percentage

Step 4 : Resource ratio based Group ratio formation
Step 5 : Parallel Connectivity

4.2 Algorithm Description
 In parallel way source definition algorithm, first the number of
subqueries are counted using a CF(Counting Function). Next the
availability of the server is calculated. And the percentage of the free
resources in server is calculated using Intelligent Group Service
(IGS). According to the ratio obtained by the IGS the subqueries are
disseminated to three different servers and each subquery is assigned
as a thread which enables parallel processing and thus minimize the
execution time.

4.3. Data constraints segment

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 881
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 The process of data constraints validates the admin accessing to
start the entry level processing. The entries are stored in persistence
memory using Oracle database managed in java. The System collects
the necessary data to manage the person details with following types.
Personal info like name, age, Official Info like job, type, experience,
Tree Info like relationship with the family head, Activities Info like
extracurricular activities, Education Info like graduation details,
Social Info like any members in clubs or association. All the details
are managed in easy GUI format with proper data constraint
validation and duplicate verification. Each person will have
automated generated ID known NPIN (National Person Identification
Number)

Fig 2.Performance of Parallel way Source Definition Algorithm

4.4. Persistence mechanism
 Oracle database contains tables to store the relevant information.
The Master details are stored in master table and all child tables
maintain the relationship with master table. The NPIN acts as
primary and reference key to maintain the unique constraint. NPIN is
the number allotted by system when the new record is added. The
static records are added in tables by using defined program and staff
can add the new details in all other networked systems. By using
Mirror techniques, the data will be updated in different servers (3
Servers) for the data security. The updation process will be managed
using parallel techniques.

4.5. Query process
 Grouped queries are the query to group the duplicate records based
given group entity. The group entity is the duplicate values column
name. The CF first selects the entity column to start the group
process. Now CF system counts how many grouping through the
First Server. Grouping process Count can be used to define the
number of way processing.

4.6. Percentage techniques
 Dynamic percentage technique is the proposed approach in our
system. Because each server has its place in network and the updated
data will be stored in three different systems. When the query process
is started first, IGS checks the availability of three servers. Three is
not constant and it can be increased at run time, without modifying
any code level process. Percentage approaches are based on system

resources and percentage will be defined by runtime. For example
less resource system has less data transfer task and so on. Parallel
approach starts different process to the systems.

4.7. Partial fetching and assembling
 Each one thread have the separate way and responsible to
download the allotted group info from the server. No one thread
interrupts the process of other threads. Because of parallel accessing,
many groups data are downloaded at same time. The assembler sits at
one layer and waits to complete for all threads. After the completion
of all threads, the assembler starts assembling task. It means the
partial data will be combined to single unit and the output process
starts.

Fig 3.Performance of other algorithms

V. RESULTS AND DISCUSSIONS
 In existing system, one to one execution takes place in correlated
subqueries. But in proposed system, we use parallel way source
definition algorithm, in which each subquery is assigned as a thread
and it is disseminated into three servers and it is executed and this
reduces the execution time of correlated subqueries. Proposed system
is more efficient. Performance of parallel way source definition
algorithm is shown in figure 2.

VI. PERFORMANCE EVALUATION AND

COMPARISION OF ALGORITHMS

1. No subquery, equal incoherency bound (naıve): In this algorithm,
the client query is executed with each data item being
disseminated to the client independent of other data items in the
query. Incoherency bound is divided equally among the data
items. This algorithm acts as a baseline algorithm.

2. No subquery, optimal incoherency bound (optc): In this
algorithm also data items are disseminated independently but
incoherency bound is divided among data items so that total
number of refreshes can be minimized.

3. Random subquery selection (random): In this case, subqueries
are obtained by randomly selecting a DA in the each iteration

0

500

1000

1500

2000

2500

Server 1 Server 2 Server 3

Server Capacity

No of Groups

No of Thread

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 882
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

of the greedy algorithm. This algorithm is designed to see how
the random selection works in comparison to the sumdiff
based algorithms.

4. Subquery selection while minimizing sumdiff (min- cost):

5. Subquery selection while maximizing gain (max- gain):
Compared with these above algorithms Parallel Way Source
Definitions Algorithm plays a good role in minimizing the
execution time of correlated subqueries.

Performance of all of the algorithms is compared and it is shown in
figure 3.

VII.CONCLUSION AND FUTURE ENHANCEMENTS

 Client Framework prepares task and it will be divided into many
divisions to start separate way to start the multi connection process
using threads. Intelligent Group Service checks the availability of
groups and decides thread counts. Data producer Service prepares the
result and return to Client frame work. After making fast retrieval
Assembler assembles it in locally. In this paper multiple threads are
used. It provides parallel communication. So that the data can be
retrieved fastly from the server. It reduces the waiting time of the
client. Here admin server and client are managed in network
environment. Based on the groups the client apps creates the threads
and the process will be decided at dynamically. After the group
counting process the client apps the check the server process to make
group and resource calculation. All are done in system dynamically
and it is merit of our system. More type of data can be collected.
 When user enters data in mobile, the data will be stored in server.
To accomplish this, mobile application receives the data. By using
tower communication the data will be sent to server attached
Bluetooth device. Then the Bluetooth device sends the data to server.
Web based environment is also possible to run under www.

REFERENCES

[1] Rajeev Gupta, and Krithi Ramamritham, “Query Planning for

Continuous Aggregation Queries over a Network of Data
Aggregators”, IEEE transactions on Knowledge and Data
Engineering June 2012.

[2] Davis, J. Parikh, and W. Weihl, “Edge Computing: Extending
Enterprise Applications to the Edge of the Internet,” Proc. 13th
Int’l World Wide Web Conf. Alternate Track Papers & Posters
(WWW),2004.

[3] D. Vander Meer, A. Datta, K. Dutta, H. Thomas, and K.
Ramamritham, “Proxy-Based Acceleration of Dynamically
Generated Content on the World Wide Web,” ACM Trans.
Database Systems, vol. 29, pp. 403-443, June 2004.

[4] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B.
Weihl, “Globally Distributed Content Delivery,” IEEE Internet
Computing, vol. 6, no. 5, pp. 50-58, Sept.2002.

[5] S. Rangarajan, S. Mukerjee, and P. Rodriguez, “User Specific
Request Redirection in a Content Delivery Network,” Proc.
Eighth Int’l Workshop Web Content Caching and Distribution
(IWCW), 2003.

[6] S. Shah, K.Ramamritham, and P. Shenoy, “Maintaining
Coherency of Dynamic Data in Cooperating Repositories,” Proc.
28th Int’l Conf. Very Large Data Bases (VLDB), 2002.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press and McGraw-Hill 2001.

[8] Y. Zhou, B. Chin Ooi, and K.-L. Tan,
“Disseminating Streaming Data in a Dynamic
Environment: An Adaptive and Cost Based
Approach,” The Int’l J. Very Large Data Bases,
vol. 17, pp. 1465-1483, 2008.
[9] “Query Cost Model Validation for

Sensor
Data,”www.cse.iitb.ac.in/~grajeev/sumdiff/Ravi

Vijay_BTP06.pdf, 2011.
[10] R. Gupta, A. Puri, and K. Ramamritham, “Executing

Incoherency Bounded Continuous Queries at Web Data
Aggregators,” Proc. 14th Int’l Conf. World Wide Web
(WWW), 2005.

Padmapriya.S.T received her M.sc., degree in software
engineering from R.V.S. College of Engineering and
Technology, India, in 2011. She is currently pursuing her
M.E. in computer science and engineering from Sethu
Institute of Technology, India. Her research interests include
natural language processing and Query processing, in web
scenario and Networking.

Dr. J. Sutha graduated in Computer Science and
Engineering with first class in the year 1991 from
Madurai Kamaraj University, obtained master
degree in Computer science and Engineering with
first class with distinction in the year 2000 from
Madurai Kamaraj University, Madurai and
completed Ph.D Program in Anna University,

Chennai in the year 2008. Her field of specialization is Image
Processing and Artificial Intelligence. She started her teaching
career as Lecturer and now she is Professor and Head of Computer
Science and Engineering of Sethu Institute of technology, Madurai.
She has more than 15 years of experience in teaching in
Engineering college and 3 years in an industry. She has guided
various industrial and research projects for engineering students. She
has guiding 10 Ph.D scholars. She is doctoral committee member for
more than 10 research scholars. She has written 5 books, namely,
“Computer Programming”, “Programming with C”,
“Fundamentals of Computing and Programming”, Computer
Practice Laboratory and Computer Practice Laboratory II for
first year B.E/B.Tech students. She has published eight papers in
International Journals, six papers in International conferences
and twelve papers in national conferences.

IJSER

http://www.ijser.org/

